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Multipole Mixtures in the M8ssbauer Effect

J«Ts Dehn, J.G. Marzolf and J.F. Salmon
RINS, Woodstock College, Woodstock, Maryland

A theory of multipole mixtures applicable to resonance
absorption is developed. The method used is an extension of
Malus' law to include elliptically polarized multipole
mixtures. The case of dipole-quadrupole mixtures is treated
in detail as a means of measuring E2/M1 mixing ratios and

checking time-reversal invariance in certain nuclei.
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INTRODUCTION
Fra.uenfelder:L and his co-workers have developed and applied the
theory of elliptical polarization in the M8ssbauer effect. In their
paper (referred to hereafter as F) a method of complex vector parameter-
ization was used ‘to derive an expression for the transmission pattern,
IZ=TII'cs’® (1)
such that the factor I, which is proportional to the intensity of the
emitted radiation, can be factored out on the right side of equation (1).
Then X » Which is proportional to the absorption cross section, may be
found explicitly in terms of the Euler angles «, p for the oriented
emitter and oC/, /@’ for the oriented absorber. The angular factor,
&o@"@ , 1s given in Table V of F for pure dipole and quadrupole
radiation and for vari‘é'us values of M and M', the changes in magnetic
quantum number for emitter and absorber respectively. However, this
method proved too complicated for a convenient treatment of multipole
mixtures. It is the purpose of the present paper to develop the theory
of multipole mixtures by a more direct method.
THEORY
Let us begin with a modified form of equation (38) in F for the
electric field vector,
&, m= a £, (M) + A PE, (M) (2)
where a and b e*? are products of the appropriate Wigner 3j symbols

and reduced matrix elements X , as explained by F. We can choose a, b



and the relative phase of the nuclear matrix elements, ? s to be real
numbers. The angular dependence is expressed by the vector

E,(m= " b =7, e d ) @) (3)
where the upper signs refer to electric radiation and the lower signs to
magnetic radiation., We shall be concerned with the case of most physical
interest, namely, a mixture of magnetic dipole (L = 1) and electric
quadrupole (L =2) radiation. In the last equation, Y is the Euler angle
measured about the axis of nuclear orientation, /5 is the angle between
this axis and the axis of observation, while « is the azimuthal angle

measured about the axis of observation. The complex unit vectors are,

7?1(—‘:1’(21'43;)/\/3: (1)

/\*c A
so that M » . 7(,, = 5/,,/, while the rotation matrix elements d/(‘%gl are

given in Table II of F, reproduced here as Table I.

The quantity we are interested in is

TZ = | &0 £5 |2

laatgfo_(m)@é(m') + ab'e’:‘f”gg(n)-ﬁ(w) (5)
+ athe P pr(n)-B4H") + vb'e O hyan m ) ”

As a first step it is convenient to compute the complex numbers listed
in Table II by using equation (3). From Table II and equation (5) with
a or b set equal to zero, we can derive the formulas given in F. For
example, with b = b' = 0, we may compute I =‘ ,é-’:("‘)‘,é;(ia)la
which appears as the last. entry in Table IIT. If in addition we let
a=al, £=’, /5=p/ , and use the upper signs in this formula, we

find the intensity squared and finally the intensity



T = 4o (hondr pin28)=% Al B(lersis). (o)
We may divide by this quantity to find

Z= @ [£EN = Tewa™® (7)
and divide again by I' to find
2 Nl %X /)R
co®® = (TI') 'é‘,é’ (8)

which appears as the first (or fourth) entry in Table V of F. We have
omitted subscripts and arguments in equations (7) and (8) to indicate
their general applicability even to multipole mixtures.

Before proceeding further, let us derive two auxiliary formulas
which may be used to fill out Table II. The first is hardly more than
a rearrangement of the quantities involved, as follows:

B0 EL) = [E,00ELx ') I* = TER(M'):EL (M) I* (9)

where subscript x denotes the operation of <« °<)/ PH/&: 7<) /.
This formila is convenient for finding such quantities as’gg(M);Q%(M')
from_gz(M');Eé(M). The second formula is

BL(-M) EL(R) = (-1)" (B8O B} (Tur) ]+ (10)
where n =M + M' = (1- 35,0) and Sst is the Kronecker delta. It is useful for
obtaininglgg(-M):gé(;M') fromlgg(M);gi(fM'). We may prove it by using
equation (3) in equation (10) and equating the coefficients of the ex-

ponentials in the resulting expression. Thus we must show that

(8) 4, () _ (M (s) (%)
o amp = (G Ay 4 g ey
and
als) (B o gyttt (s8] (%) (12)

M %1 1M <1sM!



where we have ignored the symbol for the complex conjugate since the

(L)
S

are real. These relations follow from the equation

alf) = UM a5 (13)
which can be obtained from an examination if Table I or, in the general
case, from equation (4.19) of Rose?.

By using equations (9) and (10) to complete Table II we may now
éonstruct Table ITII from equation (5). In the last three entries of
Table III one or both of the dipole components is missing, so that two
of these formulas are only partial mixtures while the last is pure quadrupole.
However, they are included for the sake of completeness. In order to fill
out Table III we can employ two auxiliary transformations. To find
IZ(M,M') from IZ(M',M), we use

(«, ) 2,4 @) <> G(;ﬂ)’aj)@v; 7, (1)
that is, exchange corresponding primed and unprimed quantities. To find
IZ(-M,74') from I (M, M), we use

(a,a',b,b',(}’,?’)é—) (2,a%,-b,~b',= @,- ') (15)
with the Euler angles unchanged. These transformations may be proved
by writing out equation (5) for the quantities involved and using
equations (9) and (10) to transform one into the other. The transforma-
tion )A é—’z‘/ is not included in equation (14) since this angle does
not appear in the final result IZ.,

We may also compute the intensities given in Table IV from the
first and third entiies in Table III by using the upper signs and

letting a = a', b = bt, L=’ and ﬁ=/$, . This gives us 121(0) and



I21(+1) when we take the square root. If we use transformation (15) to
find I82(-1,¥1), we may then obtain I21(-1) by the same procedurs.
Similarly, from the last entry in Table III we obtain I,(12) as in
equation (6).
Finally, we note from equation (3) that electric and magnetic multipoles
differ only in the sign of'%Q o As a result of this, Tables II, III, and
IV are the same for a magnetic quadrupole-electric dipole mixture as for
the electric quadrupole-magnetic dipole mixture we have been describing,

although only the latter is of much physical interest.

EXPERIMENTAL POSSIBILITIES

Angular. correlation measurements have been frequently used to
determine the mixing ratio a/b and the relative phase 903. At firstu
allowance was made for the possibility that the ratio is a complex
number, a/(be*?). However, Lloyd5 showed that the assumption of time-
reversal invariance limits ? to the values 0 or 77°. Since the discovery
of violations of the validity of parity conservation, attention has
been turned toward experimental methods of checking time-reversal
invariance alsoé-8. More recently, the M8ssbauer effect has been proposed9
as a technique for polarizing the daughter nucleus in an angular correla-
tion experiment involving time-reversal and parity, and has been used10
in a coincidence experiment to determine the E2/ML mixing ratio of the

123-keV transition in Feo'.

The results of our paper might be used to determine a/b and @

b

for muclei which show the M8ssbauer effect and are known to emit
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mixed E2/M1 radiationt?. Although only a limited number of such nuclei
are known, and the MBssbauer effect requires the ground state to be the
final state of a low energy (K150-keV) transition, still Zeeman
experiments using only the MBssbauer effect can serve as a complement
to the techniques described above. Of particular interest would be a

more accurate check of time-reversal invariance for such nuclei.

CONCLUSION

The theory of dipole-quadrupole mixtures has been presented in
detail for emitter and absorber nuclei oriented in magnetic fields
so that separated Zeeman lines appear. The method used is a traditional
one since it amounts to an extension of Malus! law, discussed in most
texts on optics. Both & (the "polarizer") and ;2/ (the "analyzer") are
projections of the electric vectors on the plane of observation, the
‘;l(;) 7/(1_./ or 27 ?A plane. Malus' cow (<~«’) law holds for the case
of plane-polarized radiation, M = M’ = 0, It is obtained by projscting
one vector on the other, squaring the magnitude of the result and
dividing by the intensities as in equation (8). We have extended this
method to include eliptically polarized radiation for multipole
mixtures and the pure multipoles which are special cases of these mixtures.
Since equations (3) and (13) are perfectly general, the method may be
extended to multipole mixtures of any order. Possible use of these

results in experiments has also been briefly described.
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Table I. Reduced rotation matrix elements, d( )

2
for dipole and quadrupole cases.
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Table IV. Intensities for guadrupel
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-dinola mixtures.
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Table II. Complex numbers &'(M)<g!(M'). | i
E (M) B ()
(a) Dipole radiation (e=t=l)
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(c) Cross terms (s=l, t=2)
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r " Table III. Tranemiseion factors IZ = | £}, (Mgl (m))* 7
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